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SUMMARY

Several iterative algorithms based on multigrid methods are introduced for solving linear

Fredholm integral equations of the second kind. Automatic programs based on these algorithms

are introduced using Simpson's rule and the piecewise Gaussian rule for the numerical

integration.

INTRODUCTION

Several multigrid iterative methods based on the Nystrbm method are applied for the fast

solution of the large dense systems of equations that arise from the discretization of Fredholm

integral equations of the second kind. We will consider the linear Fredholm integral equation of

the second kind,

fn k(s,t)x(t)dt = y(s), s E n (1)

with D a bounded close domain, and yC X where X is the underlying Banach space. Necessary

assumptions are

(i) k(s, t) is such that the associated integral operator K is compact from X into X

(ii) _ is not an eigenvalue of K and )_ ¢ 0

The Nystrbm method for solving (1) uses some type of numerical integration to obtain the

approximating equation

n!

)_x,(s) - __, (_j(s)xl(tj) = y(s), s e D (2)
j=l

the nodes tl, t2, .... , tnz are in D, and zt(t) - x(t). The weights aj(s) can be defined in a variety of

ways, depending on the smoothness and form of the kernel function. If k(s, t) and x(t) are

reasonably smooth, usually aj(s) = wjk(s, tj), where
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fD f(t)dt ,_ _ wjf(tj)
j=l

is a numerical integration formula. Let the numerical integration operator I(t be defined by

nl

Ktx(s) = y_ wjk(s, tj)x(tj), s • D
j=l

Using (2) and (4), (1) approximated by the linear system

nl

Axt(ti) - _ wjk(ti, tj)xt(tj) = y(ti)
j=l

We will denote (1) and (5) symbolically as

(3)

and

(4)

(5)

(6)

(A - gt)x_ = y (7)

respectively. Our discussion is based on the convergence of a sequence of approximations to the

unique solution of (1).

In finding numerical solutions for equations (1), the system (5) is too large to be solved

directly. The purpose of this paper is to consider some iterative variants of (4). The basic

assumptions needed in our algorithms are given in section 2. In section 3, linear iterative

algorithms are given based on Simpson's rule and piecewise Gaussian quadrature rule for the

numerical integraion formulae. And in the section 4, we include numerical examples.

BASIC ASSUMPTIONS

The methods will be defined and discussed using the abstract formulation of Anselone [1] and
Atkinson [3], [4] for families of collectively compact operators.

Let Xt, l = 0, 1,2...,be finite-dimensional subspaces of the Banach space X and let

Pt, l = 0, 1,2, ..., be a bounded projection operator from X onto Xl. We need the following

assumptions for {Xt} and {P t}

(A1) Xo C Xa C .... C Xt... C X

(A2) trim I[f - Ptfll = 0 for all f • X
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The sequence {Xz} is thought as being associated with a sequence of decreasing meshsizes {hi}

with lira h_ = 0. Corresponding with this sequence {ht},we approximate K by a sequence of
1--*oo

operators {Kl}, Kl : X --4 X. In multigrid iteration, the subscript I is called "level'.The

hypottieses-on {Kt : i >_ 1} and K are as follows.

(A3) K and Kl, l >__1 are linear operators on the Banach space X into X.

(A4) Klx -* Kx as n -4 oc, for all x E X.

(A4) {Kt} is a collectively compact family of operators.

The following is a consequence of the assumptions (A3)- (A5):

Lemma 1 Assume (,43)- (.45). Then with n defined as in (3)

(i) K is compact

(ii) II(K - K,)KII and II(K - Igt)I(tll converge to zero as n -4 oe

(iii) /f a, = sup sup I[(K - gm)Knll, then lim at = 0
m>l n>l 1---+oo

Proof. See Atkinson [4].

Lemma 2 If (A - K) -1 exists, then

(A " K,) -1 exists for sufficiently large l; say N(A), and is uniformly bounded by c2(A) and

Ilx- x, ll c2( ) IlKx - K,xll , l >__N(A)

where xt -- (A - Kl)-ly

Proof. See Atkinson [4].

This shows xt -4 x and gives a rate of convergence.

LINEAR ITERATIVE METHODS

Multigrid Methods

Assume that xt.0 denotes a approximate solution of (7) with residual

dt = Yl- (A - Kl)xt,o

Then improve on the accuracy by writing

xl,1 : Xl,o + _l

where the correction _Stsatisfies the residual correction equation

(s)

(9)
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(A - IQ)6t = dt (10)

In general, the correction term 6t will be small, and it is unnecessary to solve the residual

correction equation (10) exactly. Thus we may write

3t = Btdt (11)

where Bt denotes a bounded linear operator approximating (A - IQ) -1. By (??) and (9) together

with (11), we obtain

xt,, = [A - Bt(A - !Q)]X,,o + Btyt (12)

as the new approximate solution to (7). The equation (11) can be represented well by means of

coarser grid functions

(/_ -- l_l-1)_l-1 ---- dr-1 (13)

where dt_lis chosen reasonably and depends linearly on art. If r : Xt --_ Xt-i is the restriction

mapping, then

dr-1 = rdt (14)

Having defined dt_lby (14), 5t-_ is obtained using (11) at level l- 1. Having obtained 5__lwhich

is defined only on the coarse grid level, we need to interpolate this coarse-grid function by

6t = pSt-1 (15)

where p describes the prolongation of a coarse grid function to a fine grid function.

We note here that the choice of the prolongation p in (15) must be small enough to satisfy

11I-prll < C hi (16)

where the consistency order r depends on the discretization. (e.g. on the order of the quadrature

formula). For the restriction operator r, we will consider both trivial injection and Nystrom type
restriction.

Our automatic algorithm is based on the following multigrid iteration which is given as a

recursive procedure.

Multigrid iteration for solving (A - IQ)xt = y

Procedure Multigrid (l, xl, y)

if I = 0 then

solve x0 = (A - Kt)-Xy

otherwise

(17)
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1 •

et = x[I<txt + y]

dt = (I - Kl)2t - y

dz-1 = rdt

repeat the Procedure Multigrid with (l- 1, _t-1, dr-l)

x? e_ = _._ - p6t-_

We now give some basic results of the multigrid algorithm (17) that are used in our automatic

algorithm.

Let _k be the contraction number of the multigrid iteration employed at level k

- <- -
Then it is known that {_k} are uniformly bounded by some ¢ < 1.

(18)

Let

:= max _k (19)
l<k</

where l is the maximum level in (17). The relative discretization error, the difference between xk

and Zk-1, is often estimated by

for l <k<l

where 15is a prolongation operator and r is the consistency order.

(20)

Theorem 3 Assume (20) and

with

C2¢ _ < 1

c_:=max[hk-']_
l<k<,[_J

then the i th iteration of the multigrid procedure (I7) at level k results in 37k and satisfies the

error estimate

II_k- xkll<_C3C_h[
for O<_k<l

where

c3-
1 - C2_ _

(21)

(22)

(23)
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Proof. See Hackbush [11].

Theorem 4 Assume the validity of (22) and suppose h__l < 1 then the i th iteration of the--ff-_ 7
multigrid procedure (17) at level k results in :?k satisfies the error estimate

where

It_k- xkll_<C, IIx_- xll

C4- (2"- 1)( i
1- GO

Proof. See Hackbush [11].

(24)

(25)

Automatic Algorithms

The automatic algorithm (k in (18) is used to estimate the iteration error. Then together

with the discretization error the global error in the solution is estimated. Often G is estimated by

(26)

Then

in _k
[xk - xk' - 1_{÷1 - x_[ (27)1 - G

is used to estimate the iteration error. Thus at any level, a minimum of two iteration iS required

to estimate the iteration error. However, (24) together with (25) can be used to estimate ¢ using

iteration error
(28)C4 "= discretization error

and it will enable us to estimate (27) with only one iteration.

Our first algorithm is based on Simpson's rule with double the node points as the level

increases, i.e. dimension of the linear system at a level l is 2 t+l + 1. In this case we have C2 = 16

in (21). Thus by the condition (21), if ¢ < _ the estimates in (22) holds with i=l, i.e. only one

multigrid iteration per level. The result is computational savings. As the level increases the

amount of computation increases, so that there is a significant time savings in performing only one

iteration as the dimension of the linear system being solved becomes larger. Moreover G in (18)

goes to zero as the level k increases, which means that after a certain level k, _k becomes so small

that the iteration error becomes much less significant than the discretization error, hence more

accurate estimation of it is not needed. Thus one iteration is sufficient at this stage.
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The secondalgorithm is basedon the piecewiseGaussianquadrature rule for the numerical
integration scheme.We adapt the iteration error estimationschemediscussedearlier.

For simplicity we use ht = _ for l = 1,2, ... This means that we reduce the length of each

subinterval by half as the level increases. Suppose at some level l, we have a partition

Qt= {a=qo<ql < .... <q._, =b} (29)

with

qi=a+i*hl for i=O, 1,2,...,mt

and ml = 2 t :=number of subintervals, for l = 0, 1,2, ....

Then

where

_a rnl Pbf(t)dt - __, hi __, Fvj f(qi-1 + hitj)

i=1 j=l

(30)

_0 Plf(t)dt - _ _vj f(tj)
j=l

is the Gaussian quadrature rule on [0,1] with p node points.

(31)

Unlike Simpson's rule, we do not have nested node points. In the following algorithm, both

restriction and prolongation are done with Nystr6m type interpolation.

Procedure Multigrid with piecewise Gaussian (l, xl, y)

if l = 0 then

solve x0 = (A - Ko)-ly

otherwise

xt = }[ICtxt + y]

= - - y = ICtx -

dr-1 = r(Iftxt- l(lYCt)

repeat the Procedure Multigrid with (l- 1, o¢t_1, dr-l)

x? _w = _:t - psi-1

(32)

NystrSm type interpolations as in the procedure (32) are costly. Each interpolation involves

O(n_) multiplications at each level. However this can be improved as suggested in our conclusion
later.

The following theorem which is due to Atkinson-Potra [7] gives the theoretical iterative rate of

convergence for piecewise Gaussian quadrature with Nystr6m type interpolation. We will assume
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that the kernel k(s_t)belongs to the class G(o_,7). This means that the kernel k(s,t) has the

following properties:

(G1) Define
• 1= {(s,t) Ia < s < t < b}
% = {(s,t) Ia < t < s < b}

Then there are functions ki E C_(_i), i = 1,2

with

k(s,t) =kl(S,t), (s,t) • q_,, t ¢ s

k(s,t) =k2(s,t), (s,t) • tP2

(G2) if 3' >- 0, then k(s,t) • C_([a,b] × [a, b]). If 7 = -1, then the kernel k(s,t) may have a

discontinuity of the first kind along the line t = s

Theorem 5 Assume that k(s,t) • G(a,7). Then solve the NystrSm equation

N

x,(s)= _ wjk(s,t_)z,(tj)+ y(_)
j=l

using piecewise Gaussian quadrature rule with p node points in subintervals by first

obtainning xt(tl), .... , xt(tN) as a solution of the linear system

(33)

N

xt(t,) = _ wjk(ti,tj)xl(tj) + y(ti)
j=l

then using (33) as an iterpolation formula gives an error estimate

I1_= x,II= O(h,_)

(34)

(35)

where w = min{a, 2p,7 + 2}.

Proof. See Atkinson-Potra [7] for the case p=r+l.

Finally to determine i, the needed number of iteration at any level l, use (24) and (25) with

r = 2p,hence C2 = 22p.

Automatic Implementation

Our automatic implementation is divided into two stages based on the results from the

iteration method. In stage 1, (_ - Km)xm = y is solved directly, and then an attempt is made to

solve ()_ - Kl)xz = y for l > m, iteratively. If the rate of convergence is sufficiently rapid then

the stage 2 is entered. Otherwise m is replaced by l and the stage 1 is repeated. In stage 2, the

value of m will serve as the coarsest grid level in the multigrid procedure (17) and solve

()_ - Kt)x_ = y iteratively until termination of the algorithm. The iteration procedure attempts to
use the minimum number of iterates such that once the iterative solutions satisfy a certain criteria
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we will try to estimate the rate of convergenceasymptotically,which enablesthe estimation of the

rate of convergence with only one iteration per level. As shown in our numerical examples, this

scheme results in computational savings at finer grid levels.

The initial guess for an iteration of the higher level is the interpolation of the solution of the

preceding level which may have been obtained either directly or iteratively. The error [Ix - xm][

and ][x - x_]] in stages 1 and 2, respectively, are monitored continuously, regardless of whether the

iteration method is being used or not. Thus the multigrid iteration may not have been invoked

successfully before the attainment of an answer within the desired error tolerance.

In order to estimate the global error in the current solution, we need to monitor the

discretization error and the iteration error. For the iteration error estimation, (27) is used with

estimated _ in place of Ck. In stage 1, a test is made to determine whether the speed of

convergence is sufficient to enter stage 2. If

( _< [Ratiol'/2 (36)

then the speed of convergence is adequate for stage 2. This requirment will usually insure that

only two iterates are needed to be calculated in stage 2 at any given level. The number Ratio is

the theoretical rate at which the error in xt should decrease when l is increased to the next level.

In our case, since we are doubling the node points as the level increases, Ratio = with -r = 4

for Simpson's rule and r = 2p for p points piecewise Gaussian quadrature in each subinterval.

For the discretization error estimation, we compute the rate at which the error is decreasing

for the current level. For each computed level l,

NumDE := IIx,- x - ll

and let DenDE be the previous value of NumDE, if any. Then the rate is computed using

(37)

DE .- NumDE (38)
DenDE

Using this value of DE, we estimate the error x - :cl,

Error := [1 DEDE] NumDE (39)

which is a standard error estimate for sequences which are converging geometrically with a rate

DE. Having estimated Error as in (39), we use the final test

Error < e (40)

with e a desired error tolerance supplied by the user.

To ensure that only needed accuracy in xl is computed, we want to test

iteration error < quadrature error
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This is doneby

+'ll+
The test (42) is obtained by using (41) and the approximations

Jlx-+'l-- +>
If the test (42) is not satisfied, then the new iterate is calculated, and (42) is tested again.

Once an iterate is acceptable according to (42), we check for accuracy in the most recently

computed iterate using (39) and (40).

NUMERICAL EXAMPLES

The integral equation

is solved with the kernel

j_a bx(s) - A k(s,t)x(t)dt = y(s), a _< s _< b (45)

on [0,1]. A variety of parameters _ that are close to the dominant characteristic values (the

reciprocals of eigenvalues) are considered, as the equation becomes more difficult to solve as )_

approaches characteristic values. The dominant characteristic value that we use in our example is

1.4278. The right hand function y(s) is so chosen that

x(s) = e_ cos(7s), 0<s<l (46)

Table I. The First Algorithm

Dimension (Level)

)_ Desired Estimated Actual Coarsest Finest

1.00 1.0E-6 6.82E-7 6.76E-7 3 (0) 65 (5)

1.40 1.0E-4 1.62E-5 1.60E-5 5 (1) 65 (5)

1.43 1.0E-4 1.31E-5 1.31E-5 5 (1) 129 (6)
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In Table I, the Estimated columnis computedusing (39). As A approachesthe characteristic
valueof 1.4278,both the coarsestgrid leveland the finestgrid levelwereincreased. In Table II,
wegive the iterative rate of convergenceat eachlevel, and the number of iterations performed at
eachlevel is alsogiven in parentheses.As noted in section3, only one iteration is neededas the
level increases.Wheneveronly oneiteration is performedat any given level, the iterative rate of
convergenceis the maximum contraction number( in (19) estimatedusing (24) and (25).

Table II. Iterative Rateof Convergenceof The First Algorithm

Level

A Desired 1 2 3

1.00 1.0E-6 2.10E-2 (2) 5.14E-2 (1) 2.03E-3 (1)

1.40 1.0E-4 2.10E-1 (2) 5.31E-2 (2) 7.57E-3 (2)

1.43 1.0E-4 - 1.44E-1 (2) 1.44E-2 (2)

4 5 6

1.00 1.0E-6 3.40E-3 (1) 3.80E-3 (1)

1.40 1.0E-4 5.93E-2 (1) 3.79E-3 (1)

1.43 1.0E-4 4.40E-2 (1) 3.75E-3 (1) 3.89E-3 (1

For the second algorithm, the coarsest level corresponds to two subintervals. In order to give a

reasonable comparison with the first algorithm, we first give the results with 2 node points in each

subinterval. Thus the quadrature order coincides with that of the first algorithm.

Table III. The Second Algorithm with p=2

k

Dimension (Level)
A Desired Estimated Actual Coarsest Finest

1.00 1.0E-6 6.82E-7 6.76E-7 4 (0) 64 (5)

1.40 1.0E-4 1.62E-5 1.60E-5 4 (0) 64 (5)

1.43 1.0E-5 8.74E-6 8.72E-6 4 (0) 128 (6)

In the next table, we have results from the second algorithm with more node points on each

subinterval. To show the superiority of the Gaussian quadrature rule, we give results for a smaller
desired error for A = 1.40 and A = 1.43.

Table IV. The Second Algorithm with p=3,4
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Dimension (Level)

A p Desired Estimated Actual Coarsest Finest

1.40 3 1.0E-8 1.95E-9 1.93E-9 6 (0) 96 (4)

1.43 3 1.0E-8 3.97E-10 3.96E-10 6 (0) 192 (5)

1.43 4 1.0E-8 6.52E-10 6.28E-10 8 (0) 64 (3)

Table V. Iterative Rate of Convergence of The Second Algoritm with p=3, 4

Level

A p Desired 1 2 3

1.40 3 1.0E-8 1.09E-4 (2) 1.43E-6 (1) 8.84E-4 (1)

1.43 3 1.0E-8 1.39E-3 (2) 1.04E-2 (1) 2.10E-4 (1)

1.43 4 1.0E-8 9.35E-6 (2) 2.55E-3 (1) 1.30E-5 (1)
4 5

1.40 3 1.0E-8 9.90E-4 (1) -

1.43 3 1.0E-8 2.36E-4 (1) 2.42E-4 (1)

11.43 4 1.0E-8

CONCLUSION

The piecewise Gaussian rule is superior to Simpson's rule. However, as pointed out in section

3, restrictions and prolongations are done with Nystr5m type interpolation. And it involves O(n_)

multiplications at each level l without counting kernel evaluations. It appears that these

operations cause the bottleneck of our algorithms. We are in the process of applying the idea

suggested by Achi Brandt in [9] to our current algorithms which will reduce the operation count

by far. Our preliminary results appear to be promising, and progress is being made in developing

them further.
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